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In certain geophysical contexts such as lava lakes and mantle convection, a cold, 
viscous boundary layer forms over a deep pool. The following model problem 
investigates the buoyant instability of the layer. Beneath a shear-free horizontal 
boundary, a thin layer (thickness 4) of very viscous fluid overlies a deep layer of less 
dense, much less viscous fluid; inertia and surface tension are negligible. After the 
initial unstable equilibrium is perturbed, a long-wave analysis describes the growth of 
the disturbance, including the nonlinear effects of large amplitude. The results show 
that nonlinear effects greatly enhance growth, so that initial local maxima in the 
thickness of the viscous film grow to infinite thickness in finite time, with a timescale 
8p/Apgd,. In the final catastrophic growth the peak thickness is inversely proportional 
to the remaining time. (A parallel analysis for fluids with power-law rheology shows 
similar catastrophic growth.) While the small-slope approximation must fail before this 
singular time, the failure is only local, and a similarity solution describes how the peaks 
become downwelling plumes as the viscous film drains away. 

1. Introduction 
This work examines the strongly nonlinear effects of finite amplitude in the 

Rayleigh-Taylor instability of a horizontal viscous film under a shear-free boundary 
and over a much less viscous fluid. Inertia and surface tension are neglected, and, in 
the parameter range considered, the motion is limited by normal stresses in the more 
viscous fluid. The analysis exploits the fact that the most unstable wavelengths are long 
compared to the thickness of the film. The results show how the growth of disturbances 
to the interface becomes greatly enhanced when the disturbance amplitude becomes 
large, leading to the formation of downwelling sheets or plumes in a finite time. 

The motivation for this problem comes from certain geophysical situations, 
particularly the stability of the Earth’s lithospheric plates. In simplified terms, the 
oceanic lithosphere (tectonic plates) can be considered a cold, stiff thermal boundary 
layer above the convecting mantle. Where two plates come together, one subducts 
under the other and flows downward due to its negative buoyancy. The question of 
how a new subduction zone is formed, how one large plate may break into two and 
thus allow some of the dense material to flow back down into the mantle, is not yet 
resolved. Other closely related geophysical situations include the surfaces of lava lakes, 
thermal convection in the mantles of other planets, and possibly convection in the 
Earth’s solid core. 

This work examines a simple model of one possible mechanism for the initiation of 
subduction : the Rayleigh-Taylor instability. In this model, the lithosphere and the 
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mantle are treated as distinct, highly viscous fluids, the lithosphere being denser (and 
much more viscous) than the mantle. In this unstable configuration, any variations in 
the lithosphere thickness tend to grow, and when the thickness variations become 
significant, nonlinear effects cause the growth to accelerate catastrophically, giving 
downwelling regions (modelling subduction). 

A more realistic model of the lithosphere may be a fluid with a power-law rheology, 
with most of the layer being very stiff, but yielding more readily in regions of rapid 
deformation. A long-wave analysis for this case (Appendix B) shows that the growth 
in the deforming regions again becomes catastrophic due to finite-amplitude effects, as 
in the Newtonian case. 

A companion work (Canright & Morris 1993) considers a different model for the 
lithosphere : as a thermal boundary layer growing under a suddenly cooled horizontal 
boundary, where the fluid viscosity depends strongly on temperature. The long-wave 
analysis shows that, again, the nonlinear effects of finite amplitude give catastrophic 
growth, yielding sheets in finite time. For that case the force balance and the resulting 
growth of peaks is essentially the same as that considered here, because thermal 
diffusion becomes unimportant where the layer is thick. The Rayleigh-Taylor problem 
considered here is the simplest example of this dynamic balance. 

The instability of a dense fluid supported by a lighter one has been studied 
extensively, beginning with the analysis of Rayleigh (1883). Taylor (1950) noted that 
acceleration would give the same effect as gravity, in agreement with the experiments 
of Lewis (1950). A thorough introduction to the linear theory is given by 
Chandrasekhar (1961, chap. X), and recent surveys of previous work are given by 
Sharp (1984) and Kull(l991). Many of the analyses (e.g. Bellman & Pennington 1954; 
and Menikoff et al. 1978) have focused on the initial small-amplitude growth, where 
linearized equations are appropriate. One approach for examining the nonlinear effects 
of large amplitude is direct numerical simulation, e.g. Harlow & Welch (1966) and 
Tryggvason (1988), or through boundary-integral computations, e.g. Baker & Meiron 
(1984), and Newhouse & Pozrikidis (1990). 

To investigate the nonlinear effects analytically, the most common approach has 
been the perturbation method, where various quantities are expressed as power series 
in the small initial amplitude or slope, giving linearized equations for each order (e.g. 
Emmons, Chang & Watson 1960). However, a wide variety of other methods have been 
employed (primarily for inviscid fluids) e.g. least-squares approximation (Kull 1986), 
averaging (Drazin 1969), multiple timescales (Nayfeh 1969), strained coordinates 
(Amaranath & Rajappa 1976), generalized coordinates (Dienes 1978), Lagrangian 
formulations (Ott 1972), and heuristic models (Baker & Freeman 1981; Aref & 
Tryggvason 1989). Also, Dussan V. (1975) used energy methods to determine the 
stability of disturbances of arbitrary amplitude. In the above studies, inertia is 
important. The situation we consider, of a thin viscous layer in creeping flow, has been 
examined primarily in the geophysics literature, e.g. the experiments and weakly 
nonlinear theory of Whitehead & Luther (1975). 

Our analysis is equivalent to a perturbation expansion in the interfacial slope, which 
for long waves remains small even for large amplitudes. But, unlike the standard 
approach, the interface position is not expressed as a series ; hence the (leading-order) 
interface conditions are nonlinear, being applied at the moving interface rather than 
expanded about a plane. In this way the nonlinear effects of finite amplitude are 
explicitly included. We derive the small-slope equations for three dimensions, and give 
solutions for the two-dimensional and axisymmetric cases. The results show that 
thickness maxima grow to infinite thickness in finite time; thereafter the layer drains 



A viscous jh over a passive fluid 35 1 

through these downwelling regions. (Of course, the small-slope assumption must fail 
before this, but the failure is localized in asymptotically narrow regions with negligible 
effects on the dynamics in the rest of the layer.) 

2. Problem statement 
Two horizontal layers of distinct Newtonian incompressible fluids are bounded 

above and below by horizontal shear-free boundaries (see figure 1). The upper fluid (of 
density pl, viscosity pl, and average layer thickness d,) is denser and much more viscous 
than the lower fluid (of density pz < p1 and viscosity ,uz -g pJ, and the upper layer is 
very thin (d, 6 d,). Surface tension is neglected, and both fluids are assumed to be so 
viscous that we can neglect inertia. The former assumption requires that yk2/Apg 4 
1, while the latter requires ApgL3/p ,  Y' < 1, where y is the surface tension, k is the 
wavenumber, L is the largest lengthscale, Ap = pl--pz, g is the acceleration due to 
gravity, and Y is the smaller kinematic viscosity. (The latter restriction is easily satisfied 
in mantle flow.) 

Initially both fluids are at rest in unstable equilibrium. At t = 0 the interface is 
slightly disturbed, after which the position of the interface is 6(x, y ,  t). (Long-wave 
solutions will be given only for the special cases of two-dimensional and axisymmetric 
disturbances .) 

A reduced pressure p is defined in terms of the total pressure P by 

P ( X ,  Y ,  Z , O  = P ( X ,  Y ,  z , t )  + Pz gz,  (2.1) 

so that in equilibrium p is a constant in fluid 2. Then the governing equations are 

V ( p +  Apgz) = p1 V2u in fluid 1, 

v p  = pz v=u in fluid 2, 

v-u = 0,  

( 2 . 2 ~ )  

(2.2b) 

(2.3) 

where u is the velocity vector with components (u, 0, w). The boundaries exert no shear, 
and across the interface, which moves as a material surface, both velocity and stress are 
continuous, hence 

w = u, = v, = 0 a t z  = 0 andat z = d,+dz, ( 2 . 4 ~ )  

[UI 1; = 0 at z = 8(x,y, t), (2.4b) 

b i j  9 1  1; = 0, ( 2 . 4 ~ )  

8t+uf3z+v6v = w, ( 2 . 4 d )  

where subscripts indicate partial derivatives, the brackets [ I  1; indicate the change in the 
enclosed quantity across the interface from fluid 1 to fluid 2,  g i j  is the reduced stress 
tensor (using the reduced pressure p), and n is a unit vector normal to the interface, 
with components n,. (If the upper boundary is instead a free surface with no shear and 
zero pressure, then in the long-wave analysis below, the surface deflection is 
proportional to the two-fluid interface deflection in the ratio A p / p ,  which is assumed 
to be small. Also note that the boundary condition at z = dl + dz is irrelevant to the 
long-wave analysis below, provided fluid 2 is sufficiently deep.) Specification of the 
initial interface position S(x, y ,  0) completes the problem definition. 
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FIGURE 1. Problem description. Between two horizontal, shear-free planes, a layer of fluid 1 of 
uniform thickness d, is initially in unstable equilibrium over a layer of fluid 2 of thickness d,. The 
upper layer is denser (p, > p,), much thinner (d, 4 dJ, and much more viscous @, & y,). After the 
interface is perturbed, its position is given by 6(x,y, t).  

3. Long-wave analysis 

depth ratio, and the dimensionless wavenumber : 
The disturbance can grow in a variety of ways, depending on the viscosity ratio, the 

a = ,u2/,u1, /3 = d,/d,, 6 = kd, (3.1) 
where the disturbance has a characteristic wavenumber k. Here we focus on the case 
where the lower fluid layer is much less viscous and deeper than the upper (a < 1, 

The linearized small-amplitude solution given in Appendix A shows that for this case 
the fastest growing wavelength is long compared to 4.  In fact, the linearized growth 
rate is nearly constant over a broad range of wavelengths: 

(3.2) 
as illustrated in figure 7(a).  In this range, the growth is limited by normal stresses in 
the upper fluid, which moves nearly horizontally, while the lower fluid is passively 
moved by the interface. Outside this range, for waves short compared to d,, the growth 
is reduced because only a fraction of layer 1 is mobilized, and for long enough waves 
the viscous resistance of fluid 2 slows the growth. 

We examine the finite-amplitude growth of long-wave disturbances in this fastest- 
growing range, exploiting the fact the slope of the interface remains small even for large 
amplitudes (until the disturbance grows to the order of the initial wavelength). What 
follows is the leading-order asymptotic analysis, containing only the dominant balance 

p 9  1). 

max (a, (alp):) 4 E 4 I 
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of forces. This balance is insensitive to wavelength (the linearized growth rate is 
constant to within 0(s4)), so this analysis cannot predict the single wavelength giving 
maximum growth. 

The small slope of the interface greatly simplifies the dynamics of the thin upper 
layer, which controls the growth. In fluid 1, the horizontal lengthscale (k-l) is much 
larger than the vertical (dJ, so by continuity the horizontal velocity components (scale 
U, say) are large relative to the vertical components ( sU) .  The momentum equation 
implies that the vertical variation of reduced pressure is negligible (O(E)) compared to 
horizontal variations. 

In fluid 2, the horizontal velocity and length scales are those of the interface (U 
and k-’); the vertical lengthscale is comparable (except for waves long compared to d,, 
where the depth is the vertical scale). Then the shear stress from fluid 2 scales as 
pz u, N p z k U  (or - pz U/dz  in the latter case). Since the shear in fluid 1 scales as 
p1 u, - pl w, - p1 ekU, then the shear from fluid 2 will be negligible provided a 4 E 

(or alp < 2 if ps < l), which is just the lower bound on wavenumber assumed above. 
For wavelengths in this range, the interface motion is controlled by the dynamics of 
the upper fluid, for which the lower fluid is effectively passive and hydrostatic. 

Then in layer 1 ,  both the upper boundary and the interface appear shear-free, so the 
horizontal velocity components are independent of z (to O(s2)), as are the components 
7,,, r,,, 7yy, r,, of the deviatoric stress tensor 7i5. (This scaling analysis is extended to 
other wavelengths in Canright 1987.) 

While the long-wave equations can be derived by expanding the velocity and stress 
in powers of E ,  the meaning of the result is better understood as a force balance on a 
small column of layer 1, as shown in figure 2. Here only horizontal forces are 
considered, and as before the total stress everywhere has been reduced by the 
hydrostatic pressure of fluid 2, which does not affect the horizontal balance. Then there 
are no forces acting on the top and bottom of the column, and so the net force acting 
on the sides must be zero. The differential form of this balance can be written in terms 
of a two-dimensional reduced force tensor 4, which results from integrating the 
reduced stress tensor across the layer 

8 

Fij = [-(p+Apgz)6,,+~,,]dz, i , j= 1,2, (3.3) 
0 

where 8, is the Kronecker delta. The normal stress condition at the interface, 

- (p+Apg6)+7, ,  = 0 at z = 6 (3.4) 
can be used to eliminate p ,  so the reduced force is 

I;j = S( - Paij + ru), ( 3 . 5 ~ )  
p=-LA a Pg 8 +7w (3.5b) 

where Pis the average pressure and T,, is evaluated at the interface. Then the horizontal 
force balance means the reduced force tensor has zero divergence: 

= 0, i,j = 1,2. (3.6) 

(3.7) 

The kinematic interface condition becomes, on eliminating w using continuity, 

St + (6u), + (Sv), = 0. 

These two equations (along with conditions at the edges of the layer) govern the growth 
of long-wave disturbances, including the nonlinear effects of finite amplitude, with a 
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Fi 1 
f 
4 2  c, 

= O  

p = z,, = zyz = 0 

fluid 2 

FIGURE 2. Balance of horizontal forces, reduced by the hydrostatic pressure gradient of fluid 2, on a 
differential column of fluid 1. Because there is no shear above or below and no (reduced) pressure 
below, the reduced horizontal force tensor 4, acting on the vertical surfaces of the column has zero 
divergence. 

relative error of O(e). This conclusion is independent of rheology, and relies only on 
the small-slope approximation (valid until amplitudes are comparable with the 
wavelength) and the assumption that fluid 2 is dynamically unimportant. 

The dimensionless form of (3.6) becomes, for Newtonian rheology, 
[62+6((u,+~~.’y)],+~[6(uy+u5)]1/ = 0, ( 3 . 8 ~ )  
[a2 + 6(v, +:u,)], + +[6(u, + V,)lx = 0, (3.8b) 

while (3.7) remains the same under non-dimensionalization. (A fluid with power-law 
rheology is considered in Appendix B.) Here we used a vertical lengthscale of 4, a 
timescale of 8p/Apgdl (corresponding to half the small-amplitude growth rate), and 
any horizontal lengthscale. In this simplified problem, the layer thickness S is 
analogous to variable density, as shown by (3.7), but also acts somewhat like variable 
viscosity, as well as a body force, in (3.8). 

If the initial disturbance to the interface is axisymmetric or varies only in one 
direction, the dimensionality of the problem is further reduced, allowing simpler 
solutions to illustrate the nonlinear dynamics. The axisymmetric equations are 

U [a2 + G(ru),/r],. = +a,. - , r (3.9) 

8, + (rJu),./r = 0, (3.10) 
where u is the radial velocity component and r the radial coordinate. 
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The long-wave versions of the two-dimensional equations 

(62 + Su,), = 0, 
St + (Su), = 0, 

(3.11) 
(3.12) 

allow greater simplification. The first shows that the reduced force (scalar) F = S2 + Su, 
acting on any vertical cross-section of the layer is independent of position, though it 
may depend on time; the value of F(t) depends on the conditions at the ends of the 
layer. 

We can eliminate u by adopting a Lagrangian formulation, where the fluid 'particle' 
in this case is a material cross-section of the layer. Then the new variables are (x,, t ) ,  
where xo refers to a particular fluid section by its initial position. The resulting ordinary 
differential equation describes the growth of a moving cross-section : 

DS/Dt = S"dz(t), (3.13) 

where DS/Dt = St +US, and d,(t) = (F(t))i is the current equilibrium thickness, i.e. that 
with no tendency to grow or shrink. This result shows that the vertical motion of the 
interface depends only on the local layer thickness and the current equilibrium 
thickness (which may depend on the overall shape of the whole layer). Thus any fluid 
cross-section does not care what its immediate neighbours are doing, and the growth 
is insensitive to wavelength, as expected. 

The horizontal motion of a cross-section depends on the state of the whole layer. The 
position of each fluid cross-section can be followed by integrating the strain. By 
conservation of mass, So dx, = Sdx, where So(xo) = S(x,, t = 0) is the initial thickness of 
the section, so the strain is dxldx, = S,/S and the position is given by 

(3.14) 

where the x origin is chosen at some stationary fluid cross-section. 

4. Solutions 
To show most clearly the effects of finite amplitude, we concentrate on the simplest 

situation, where the initial disturbance depends only on x. We give solutions to (3.13) 
for three types of conditions at the ends of the layer, for which d,(t) is simple to 
evaluate. For the first, the layer is of infinite extent but the disturbance is localized, so 
that far away the layer remains in (unstable) equilibrium, and d, = 1. Next is the case 
of a periodic disturbance; then d,(t) is an integral property o f  the shape of the layer. 
The third case treats a layer of finite extent, with abrupt ends surrounded by fluid 2, 
so d, = 0; this solution also applies approximately whenever 6 grows large enough that 
d, is negligible. Lastly, to illustrate one significant difference when the disturbance 
varies in more than one direction, we show a solution to (3.9), (3. lo), the axisymmetric 
case. 

4.1. Localized disturbance 
The most illustrative case is an infinite layer with a disturbance of finite extent. Then 
the force on the ends of the disturbed region remains constant : d, = 1. This gives a 
simple solution : 

So(xo) - tanh ( t )  
S(xo' = 1 - So(x,) tanh ( t )  ' 
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where again 6, is the initial thickness and x, the initial position of a fluid section. This 
solution predicts a singularity in finite time: at the critical time t, 7 i ln  I(6, + 1)/(8, - 1)1 
the thickness 6 goes to co or 0, depending on whether the initial thickness 8, was greater 
or less than 1. (Of course, the small-slope approximation must fail when the peak 
thickness gets large enough; this point is addressed in the next section.) 

The early growth of a disturbance of small amplitude a(x,, t) = 6(x,, t)  - 1 is roughly 

Initially this gives the exponential growth of the linearized solution, but as 
nonlinearities become important the perturbation growth accelerates for peaks (a > 0) 
and retards for troughs (a < 0). To preserve volume, the peaks get narrower and 
sharper while the troughs broaden and flatten. A rough estimate for the duration of the 
linear behaviour is At - i ln  Il/a,l. 

As the amplitude gets large, the growth becomes algebraic in the time remaining 
before the singularity at time t,: 

a@,, t) x a,(x,) ezt [l ++,(xo) (eZt - l)]. (4.2) 

6 X l/(t*-t), 6, > 1, (4.3 a) 
6 x t*-t, 8, < 1, (4.3b) 

which shows that the rapid nonlinear growth occurs over a timescale A t  - 1, or, 
dimensionally, 8p/Apgd,. 

The catastrophic growth shown by the inverse relation (4.3 a) between peak thickness 
and remaining time is strikingly different from the exponential growth of small 
amplitudes. For large peaks the relevant timescale is inversely proportional to the 
current peak thickness ; thus large-amplitude effects drastically enhance the growth of 
peaks. 

Another effect of finite amplitude is that the overall strain increases, i.e. the disturbed 
section stretches in the x-direction. In fact, it can be shown (using the Schwarz 
inequality), that for any initial perturbation with a zero mean, the length of the 
perturbed section increases continually. This surprising behaviour does not apply in 
general, but rather is a direct consequence of the assumption that the force on the ends 
remains constant. 

As an example, if the initial perturbation is sinusoidal then 
8, = 1 fbcosx,, (4.4a) 

(4.4b) 

x(xo, t) = - b  tanh (t) sin (x,) + (sech2 (t) - tanh ( t ) )  x, 

ect-bcosh(t) ~ I’ 2 , ) (4.44 
2 tanh (t) sech ( t )  

+ [e@ - b2 cosh2(t)]~ ‘arctan([e-t+bcosh(t) 

and the overall strain is sech2 (t) - tanh (t) + 2 tanh (t) sech (t)/[eP - b2 cosh2(t)]f, which 
increases monotonically with time. The layer shapes for one wavelength of this solution 
at various times are shown in figure 3 ; as the growth becomes nonlinear the wavelength 
stretches out. If the initial amplitude b is small, the solution simplifies: 

1 + +b e2t cos x, 
1 -;beztcosx0’ 

6 %  (4.54 

(4.5b) 
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FIGURE 3. Interface profiles S(x) at various times ( t  = 2.5,3.0, 3.5, 3.7) following the evolution of one 
wavelength of an initial sinusoidal perturbation of amplitude for the constant-end-force 
condition (F = 1). (Here the peak reaches infinite thickness at t ,  = 3.80.) As nonlinear effects become 
important, the peak sharpens while the troughs flatten and widen; also the wavelength increases over 
time. 

4.2. Constant-wavelength disturbance 
For the second case, we enforce the more physically reasonable condition that the 
wavelength of the disturbance remain constant over time. (This could apply either to 
a periodic disturbance of infinite extent, or to a layer of finite extent bounded by fixed 
shear-free endwalls.) Then the reduced force in the layer must vary with time to give 
zero velocity at both ends of one wavelength. Integrating (3.1 1) in x shows that fixed 
ends require 

d,2(t) = 1: Sdx / l1 /6dx ,  (4.6) 

where L is one wavelength, and the numerator is just the total volume of fluid in the 
layer over that wavelength, and so remains constant. Thus the thinnest parts of the 
layer have the greatest effect on the current equilibrium thickness d,(t). We find that the 
constant wavelength requirement causes the equilibrium thickness d,(t) to decrease in 
over time (the proof again involves the Schwarz inequality). 

Eliminating d, from (3.13) (and using 6dx = 6,dx,) gives a single partial integro- 
differential equation : 

Again, the local growth depends only on the relation between the local thckness and 
an integral property of the entire disturbance, but is independent of the immediate 
neighbourhood. 

For large amplitude, the main effect of fixed wavelength is to slow the growth of 
troughs; in fact, the thickness 6 is prevented from reaching zero. In contrast, peak 
growth is only slightly accelerated. When peaks become large, then the equilibrium 
thickness d, becomes negligible in comparison, as in the constant-d, case, but sooner 
here since d, decreases. Thus large peaks show the same catastrophic growth to infinite 
thickness, given by (4 .34  The growth of large peaks, where d, is unimportant, is 
insensitive to end conditions, and our previous conclusion, that the growth of peaks is 
dramatically enhanced by large-amplitude effects, applies in general. 
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FIGURE 4. Interface profiles for the constant-wavelength end condition ( L  = 1). Similar to figure 3, 
except that the troughs become thin more slowly, the peaks reach infinite thickness slightly sooner (at 
t, = 3.74), and the wavelength remains constant. 

10' 

1 00 
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FIGURE 5. Growth of the disturbance amplitude over time for an initial perturbation amplitude of 
Both the peak amplitude amaz = a,,,- 1 and the trough amplitude amln = 1 -amln are shown: 

constant-wavelength condition (solid), constant end-force (dashed), and linearized (exponential) 
growth (dotted), for comparison. The constant-wavelength condition tends to destabilize peaks but 
stabilize troughs relative to the constant-force condition. 

Qualitatively this case is very similar to the previous, as shown by the profiles in 
figure 4, except that the wavelength remains constant. Figure 5 compares the growth 
of the disturbance for fixed wavelength with that for constant end forces, each for an 
initial small sinusoidal disturbance. 

4.3. Large-amplitude behaviour 
Where S d,, we can approximate (3.13) by 

D G p t  = P. (4.8) 

(This would also apply if the layer were of finite extent, surrounded by fluid 2, so 
d, = 0.) The solution 

(4.9) 
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shows each cross-section reaching infinite thickness in a finite time t = l/a0; this is the 
same growth as (4.3~). 

For this case, (3.1 1) integrates to 

(4.10) 

and as long as 6 remains finite everywhere, we can express this in Lagrangian 
coordinates as 

(4.11) 

Hence each cross-section moves at a uniform speed over time. These results apply 
locally around any large peak where d, is negligible. 

4.4. Axisyrnmetric growth 
How does the three-dimensional case differ from the two-dimensional solutions above? 
One difference is that the reduced force is a tensor that varies with position, rather than 
a uniform scalar. Consequently, two separate portions of the layer having the same 
thickness may not grow at the same rate. Another difference is the possibility of 
(vertical) vorticity and shear stresses in the layer. 

Here, we examine the growth of an axisymmetric disturbance without swirl. Then 
the reduced force tensor 4, is diagonal in the (I- ,  @coordinates, without shear, and has 
radial and circumferential components 

4, = S2 + 6(u, + $u/r), (4.12~) 
F,, = 62+6(+u,+u/r), (4.12 b) 

where u is the radial velocity. The radial force balance (3.9) can be expressed as 

+ 9 ( u / r ) r  = 0. (4.13) 
The axisymmetric equations (3.9), (3.10) apparently have no simple closed-form 

solutions, except when the layer is of uniform thickness. In this special case, u cc r ,  so 
F,, is uniform, and the thickness grows according to 

d8/dt = g(Sz -Kl(t)). (4.14) 

Comparing with (3.13) shows that the axisymmetric growth of a flat layer is 
qualitatively identical to (though one-third faster than) the two-dimensional case for 
comparable force conditions on the boundary. This special case may be indicative of 
the dynamics of a smooth peak at the origin; in numerical solutions the growth of large 
peaks approaches the inverse time behaviour S cc l/(t, - t ) ,  where the constant of 
proportionality is of order unity. 

We have solved the axisymmetric equations numerically for two different edge 
conditions and a variety of initial conditions. For a localized disturbance, at the edge 
of the disturbed disk (ru), = 0 to balance the force in the surrounding undisturbed 
layer. As in the two-dimensional version, the disturbed region tends to spread out since 
the broadening of the troughs overwhelms the narrowing of the peaks. For a 
disturbance of fixed radial extent, then at the edge u = 0; this case is a circular 
approximation of one hexagonal cell of a periodic array, such as seen in the 
experiments of Whitehead 8z Luther (1975). Again, the spatial constraint limits the 
deepening of troughs, while slightly accelerating the growth of peaks. In figure 6, we 
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...................... 

FIGURE 6. Interface profiles S(r) for an initial axisymmetric sinusoidal perturbation of amplitude 
where the disturbance is contained within a constant radius ( R  = 1). The central peak grows more 
quickly than the outer ring-shaped peak of the same initial amplitude. 

show profiles for this case, started from a radial sinusoid. This shows that the central 
peak grows faster than the ring-shaped outer peak, though they begin with identical 
amplitudes. 

For all of the axisymmetric cases we have calculated, the qualitative behaviour is 
similar to the two-dimensional versions, in that the nonlinearity leads to broad, flat 
troughs between sharpening peaks whose growth accelerates to an inverse-time 
catastrophe. One difference, however, is that the growth is no longer merely a function 
of local thickness, but also depends on position. For the general three-dimensional 
case, we would expect nonlinear growth to yield broad depressions separating sharp 
peaks and ridges growing catastrophically into plumes and sheets, although there could 
be additional effects due to shear and swirl. 

5. Vertical sheet formation 
Here we examine what happens in the two-dimensional case when a thickness 

maximum approaches infinite thickness at the singular time t". We will show how the 
peak becomes a vertical sheet, where the dense viscous fluid drains down. The small- 
slope equations still describe the behaviour in most of the layer, except in an 
asymptotically narrow neighbourhood of the sheet, because the sheet has only an 
asymptotically small effect on the stress in the layer. 

As a peak grows, the small-slope assumption must break down locally before the 
peak reaches infinite thickness. Since the initial disturbance wavelength is long 
compared to the layer thickness, then when the peak grows larger than a wavelength, 
that portion of the layer around the peak where the physical slope of the interface is 
O(1) or greater must be asymptotically narrow compared to the whole wavelength. 
This follows from mass conservation, and from the shape near the peak approaching 
(as we will show) an integrable negative power of x (where x = 0 at the peak). 
Therefore the small-slope approximation continues to apply almost everywhere in the 
layer; what is needed is a description of the effect of the peak or sheet on the rest of 
the layer. 

In an earlier work (Canright 1987) we give a large-slope analysis appropriate to the 
region around a peak where the small-slope approximation no longer applies. (The 
approach used there is essentially that of Wilson 1988.) Assuming that the interface is 
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nearly vertical, then the flow is extensional, driven by negative buoyancy and limited 
by normal viscous stresses. We find that large-slope effects do not slow down the 
growth, they only affect the details of the peak shape. Indeed, the catastrophic growth 
described by (4.3 a) still applies (except for a numerical coefficient of O( 1) depending 
on the shape). Physically, there is nothing to prevent the fluid from flowing down, and 
so the peak extends to become a sheet. Of course, at some point the extending peak 
either will reach the lower boundary or will become so long that the viscous resistance 
of fluid 2 becomes important. In the former case, a pool forms, without any effect on 
the upper layer, but in the latter, the flow driven in fluid 2 could alter the dynamics of 
the upper layer. 

To the rest of the layer the sheet appears as an isolated singularity, a sink of fluid. 
The horizontal force balance must still apply even to the sheet, and so the reduced force 
in the layer F(t) is continuous across the sheet. In general F(t) is an integral property 
of the whole layer, for example (4.6) for a fixed-wavelength disturbance, where the 
troughs have a greater influence than the peaks. Because the large-slope region is 
integrable (as it must be, since no new mass is created) and asymptotically thin, its 
effect on F(t) is negligible. 

As an example of the formation of a peak singularity, consider what happens when 
the initial disturbance is a small-amplitude sinusoid. (From simplicity, we assume the 
constant-force end conditions, but since F has little effect on a large peak the results 
apply to more general end conditions.) The previous solution (4.5) shows that the peak 
becomes singular as +be2t approaches unity. In that limit, (4.5a, b) become 

(5.1 a, b) 6 z cot2 (+xo), x x 2 tan (ixo) - x,. 
Then near the peak (x, 4 1) 

x M &xi (5.1 c)  
and so 6 z (+x,)-~ M (3/2x)-z. (5.1 d )  
This shows that at the singular time the peak becomes proportional to an integrable 
negative power of x, specifically s cc x-9. 

In fact, the same power of x results from any smooth initial peak that locally can be 
fit by a parabola. As the singular time is approached, the peak can be described by a 
similarity solution, as shown in Appendix C. The general similarity solution shows that 
a peak of the more general form 6, x 1 + b( 1 - c IxOIn), where y1 > 0, gives a singularity 
of the form S(x, t*) K I x I - ~ ,  where m = n/(n+ 1). Hence any initial peak becomes, at 
t,, a singularity proportional to an integrable negative power of x. 

To follow how fluid flows into the sheet, the large-amplitude equations (4.9), (4.10) 
apply near the sheet (but outside the large-slope region). After t,, there is a singularity 
(the sheet) at the origin, and the layer must move in such a way that each fluid cross- 
section reaches the singularity at the same time that it reaches infinite thickness. This 
determines the strength of the mass sink over time. 

Consider the fate of the inverse power of x singularity that forms at t,. This is most 
simply described if we take the state of the layer at t ,  to be the new reference state, and 
relabel each fluid cross-section x, by its new reference position x* = x(xo, t ,),  with 
reference thickness S,(x,) E S(x, t*), so 

S,(x,) = S(x = x,, t = t,) = bxirn, 0 < m < 1 at 7 = 0 (5.2a) 
where 7 = t - t ,  and b is some positive amplitude. Then the fluid cross-section that 
arrives at the singularity at time 7 is that which becomes infinitely thick at that time; 
we call this section x,(7): x(x, = x,(7),7) = 0. Using (4.9) gives 

~ ~ ( 7 )  = (b~)"", 6 ( ~ * ,  7) = b/(xg -x,") (5.2b, c) 
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Away from the sheet (x* P xS), the profile is still the starting profile from 7 = 0 (x = 
x*, 6 w bx-"). However, very close to the sheet 

(5.2e) 
(5.2f) 

for E = (x,/x,- 1) $ 1. 
x w imx, E 2 

6/b  2 ll(msx7) % (b7)+'/(2rnX)+ 
This shows that very near the sheet, the singularity goes like l/xi, with a scale that 

varies in time. (This local x-dependence is actually independent of the starting 
conditions, as shown in Canright 1987, Appendix C.) From (5 .2 f )  it is clear that 
whether the thickness around the sheet grows or shrinks is determined by whether 
m < ?j or m > i, respectively. 

The special case m = t gives a steady solution. For m > $, the fluid drains away down 
the sheet faster than it comes in from the sides, and the square-root singularity 
diminishes with time as it spreads out, to match onto the nearly undisturbed profile 
xPm. This would be the eventual fate of an initially ( t  = 0) smooth maximum, which 
gives m = :. Conversely, if rn < t, the square-root singularity grows as it spreads, 
fed from the sides faster than it can drain fluid away. (To get m < ?j would require a 
cusp-like initial [ t  = 01 maximum, which may not be physically realistic.) This solution 
(5.2) is again a particular case of the general large-amplitude similarity solution of 
Appendix C .  

(For the axisymmetric case, there is no similarity solution that describes how a finite 
peak grows into a plume, but we speculate that the same qualitative behaviour applies. 
A steady axisymmetric plume has the shape 6 cc l/r.) 

With the above description of how a sheet first forms and how it behaves afterward, 
the small-slope equations can be used to follow the development of the instability from 
initial conditions through rapid large-amplitude growth all the way to the draining 
away of the fluid down the sheets. The results will be inaccurate wherever the physical 
slope of the interface is not small, but such regions comprise only a small fraction of 
the domain and have little effect on the dynamics of the rest of the layer. The only 
assumption is that a sheet does not exert any net horizontal force on the surrounding 
layer. This assumption may break down if the length of a plume becomes so much 
greater than the initial wavelength that the flow it drives in the lower fluid becomes 
dynamically significant. 

6.  Conclusions 
The central concern of this work is the nonlinear interactions between buoyant 

forces and normal viscous stresses that occur in a buoyantly unstable viscous layer 
under a shear-free horizontal boundary and over a much less viscous fluid. After the 
initially uniform thickness of the layer has been perturbed slightly, the early growth of 
the perturbation is exponential; the perturbation keeps its shape while it grows. But 
when the nonlinear effects of finite amplitude become important, the thicker parts of 
the layer thicken more rapidly while the thinner parts thin more slowly, giving in 
general sharp peaks with broad, flat troughs in between, over a timescale of 8p/Apgd,. 
The accelerating growth of peaks leads to infinite thickness at some time t,, and the 
final catastrophic growth of the peak thickness 6 is algebraic: 6 = 8p/Apg(t ,  - t )  for the 
two-dimensional case. The axisymmetric case shows essentially the same behaviour. 
Similar catastrophic growth is also predicted for a power-law fluid, though the power 
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of (t* - t )  and the coefficient are different. This shows how large-amplitude growth is 
fundamentally different from small-amplitude growth ; large-amplitude effects dra- 
matically enhance the growth of peaks. 

The small-slope equations continue to apply to the layer even after the formation of 
downwelling sheets, except in an asymptotically narrow neighbourhood around each 
sheet. This is possible because the sheets do not change the horizontal force balance 
(unless the flow they drive in the lower fluid becomes dynamically significant). 
Applying the equations up to the singular time shows that at first the sheet should have 
the local shape 6 K Ixl-i, but that afterwards, as the sheet drains the layer, the sheet 
changes shape to 6cc 1xl-i. This behaviour is clarified by a family of similarity 
solutions, appropriate where 6 is large. 

This analysis depends on two key assumptions : small interfacial slope and negligible 
shear stress from fluid 2. When peaks become large enough, the slope becomes large, 
and the approximate equations become invalid. However, as long as the external shear 
is negligible, the growth of the disturbance at large slopes is essentially the same as that 
predicted here (Canright 1987, or Wilson 1988), with catastrophic inverse-time peak 
growth; while the details of the peak shape are different, this only modifies the 
prediction of t ,  by an O(1) numerical factor. Even so, when the descending sheet 
becomes long enough, the flow driven in fluid 2 will result in significant shear stress on 
the interface, retarding the growth and invalidating the approximate equations. (It is 
also possible, depending on the parameters, that inertia could become important for 
rapidly growing peaks, or that surface tension could become significant at the highly 
curves peaks.) So this analysis is not appropriate to describe what happens at the tip 
of a long descending sheet; e.g. the tip might widen to a bulb, as seen in the 
experimental plumes of Whitehead & Luther (1975) and the numerical sheets of 
Newhouse & Pozrikidis (1990) (though both of those works have a no-slip surface, a 
significant difference). Rather, the present analysis describes the transition from 
exponential to catastrophic growth of peaks due to finite amplitude, and the 
subsequent adjustment of the rest of the layer. 

The question of whether plumes or sheets are more likely to develop is beyond the 
scope of this work. Indeed, the dynamic balance considered is independent of 
wavelength, and so presumably independent of planform as well, at least for 
Newtonian fluids. However, we speculate that the lack of downwelling plumes in the 
mantle is due to rheological effects. Assuming that the lithosphere weakens with 
deformation, the two-dimensional motion leading to sheets allows the deformation to 
be concentrated at the growing peak while the layer on both sides moves rigidly 
inward ; the axisymmetric flow needed for plumes necessitates significant deformation 
throughout the entire layer. 

To apply these results to the oceanic lithosphere, an order-of-magnitude estimate of 
the timescale for the formation of a new subduction zone (starting from a finite- 
amplitude disturbance, say due to mantle convection) by this process is about 0.3 Gyr, 
or one-tenth the age of the Earth. (This assumes ,ul - P (Walcott 1973), dl - 100 
km, and Ap - 0.1 g/cm3 from a temperature difference AT - 1000 K with a thermal 
expansion coefficient CL - 3 x 10-5/K from a base density of p - 3.3 g/cm3,) This figure 
is for illustrative purposes only; the uncertainty in the appropriate viscosity is orders 
of magnitude. However, if the surface viscosity of the early Earth were orders of 
magnitude smaller than today, as has been suggested in hot-earth models (Davies 
1990), then the timescale would be correspondingly reduced ; one possible in- 
terpretation would be that modern subduction zones may have their origins early in the 
Earth’s history when the surface layer was sufficiently deformable. 
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Appendix A. Linearized solution 
Here we calculate the small-amplitude growth rates for the non-inertial problem 

with arbitrary wavelength, depths, and viscosities. (This is an extension of the analysis 
given by Whitehead & Luther 1975, to include the effects of finite depth in fluid 2.) A 
more convenient reduced pressure in each fluid is defined in terms of the total 
pressure P by 

Pl =P"1+p1gz, p2 =P",+PzgZ+APgd, (A 1 a, b)  

(or from the other reduced pressure p by p1 =pl+Apgz ,  p 2  = p",+Apgd,) so in 
equilibrium p" is zero. Assuming that the interface disturbance varies only in the x- 
direction and has small amplitude and slope, the resulting two-dimensional problem 
can be linearized by applying the interface conditions at z = dl .  Then the interface 
conditions (2.4b-d) become 

(A 2 4  
at z = d,, (A 2 b )  1 (A 2c> 

[UI II = M U z  + w,)lI; = 0 
[ -~+2Pw,I I :  = Apg(6-4 )  

6, = w 
where again [ ] 1; indicates the jump in value from fluid 1 to fluid 2. This problem is 
separable and has a simple analytical solution, assuming that the perturbation is 
sinusoidal. 

The solution is given below, where k is the wavenumber, a(t)  is the dimensionless 
amplitude, 2 3 z - (d, + d,) is the coordinate in fluid 2, a = p2/p1 is the viscosity ratio, 
and in the coefficients A ,  B, E, F, and their common denominator D,  the abbreviations 
k = 2kd1, I? = 2k4, c = cosh (k), C = cosh (k), s = sinh ( E ) ,  S E sinh (8) are used: 

(A 3 4  
(A 3b)  
(A 3 c) 

6 = dl[l + a(t) cos (kx)] ,  
Yl = (Apgdl/pl  k2) fra(t) sin (kx) [ A  sinh (kz) + Bkz cosh (kz)], 
Y2 = (ApgdJp, k2) fru(t) sin (kx)  [Esinh ( k Z )  + FkZcosh (kZ)], 
P1 = (Apgd,) { - a(t) BCOS (kx)  cash (kz)}, 
p", = (Apgdl)(-a(t)aF~~~(kx)cosh(kZ)}, 
A = ( - 1 / D )  {[2(S- E )  + af( C- l ) ]  sinh (kd,) 

+[L(S-k)+a(LI?+2(C-  1))]~0sh(kd~)}, (A 3f) 

+ [a& - k)  + XE + 2(c - l)] cosh (kd,)}, 

B = (2/D){(S-k+ccI?)sinh(kd1)+cc(C- l)cosh(kdl)}, (A 3g) 

(A 3h) 

E = (l/D)([201(s--f)+I?(c- 1)]sinh(kd2) 

F = ( - 2 / D ) ( [ a ( s - ~ ) + f ] s i n h ( k d z ) + ( c -  l)cosh(kd,)}, 
D = (S-k) (~+&)+2a(Cc-  1 +I?k)+a2(S+I?)(s-k).  

(A 3i) 
(A 331 

Then from 6, = w(z = d,) we get the growth rate: 

(A 4 4  
* 1  ( S -  IT) (c - 1) + a(s - E )  ( C -  1) 

k (S- R )  (s + Jz) + 2a(Cc - 1 + ZE) + a2(S+ X) (s- L) . C T = =  

The symmetry of the problem is apparent in the solution. Thus, without loss of 
generality, assume that fluid 2 is the deeper layer: I? > f .  
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This solution is governed by three dimensionless parameters : the non-dimensional 
wavenumber k (or E ) ,  the depth ratio p = d, /d ,  = I?/&, and the viscosity ratio a = 
,u2/,u1. Note that 6 is a monotonically decreasing function of a :  if we increase ,uz while 
,ul stays constant the growth rate can only decrease. In the limit p+- co then (A 4c) 
reduces to 

which is just the result of Whitehead & Luther (1975). Figure 7(u) shows the effects 
of finite depth for a < 1 ; figure 7(b) shows the effects of viscosity ratio on +(k) for 
p =  00. 
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FIGURE 8. Linearized growth regimes for /? % 1 in the ( f ,  a) parameter plane, showing the asymptotic 
growth rates d in each regime. (Dashed lines indicate change of rate-controlling viscosity.) 

When ,!I % 1 there are well-defined regimes of growth where different force balances 
are dominant. These are shown schematically, with the corresponding growth rates, in 
figure 8. In discussing the various growth mechanisms below, it should be kept in mind 
that the same mechanisms continue to apply as long as the slope of the interface 
remains small, which for long waves includes large-amplitude growth. 

For sufficiently short waves (k B min (1, max ( P l ,  a-3)) the disturbance sees neither 
boundary and 3 --f [&(l + a)]-l, so if one viscosity is much larger, that one limits the 
growth. The dominant mechanism here is that the vertical motion of the interface is 
resisted by normal viscous stresses in the more viscous fluid, and the growth rate 
diminishes with decreasing wavelength. 

At the other extreme, for sufficiently long waves (k -g rninwl,  ($‘/a);, (a,@)) the 
boundaries confine the flow to be mainly horizontal, limited by shear stresses at the 
interface. Then 6+E2( 1 +p/a)/12, and the controlling viscosity depends on whether 
a > p. 

Between these extremes, the waves are long compared to layer 1 so the motion of the 
interface is primarily horizontal, and there are four different regimes. In one (a-l < f < 
d, 1 Q a < p”), fluid 2 is relatively immobile and the growth is limited by the shear 
across layer 1, giving the same growth rate as the previous case, i.e. k2/12. (This 
possibility was apparently overlooked by Whitehead & Luther.) In another (p’ 4 k 4 
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min (a, a-')), the slight resistance of fluid 2 (the rate-controlling viscosity is p2) gives a 
small shear gradient across layer 1, which over the long wavelength is sufficient to 
balance the buoyancy, giving B +. k/4a. 

In the other two regimes, the less viscous fluid is effectively passive, and the primarily 
horizontal motion of the more viscous layer is limited by normal viscous stresses. The 
resulting growth rate is nearly independent of wavelength, and includes the maximum 
growth rate possible for a given viscosity contrast a where this behaviour occurs. (For 
other a, i.e. 1 -4 a 4 p", we expect the fastest growth at the crossover between short- 
and long-wave behaviour.) When fluid 2 is much more viscous (a % p), this regime 
(v/a)i -4 k F1) gives B -+ 8/44 while for fluid 1 more viscous (a 6 1) this regime 
(max (a, (as)") << k" -4 1)  gives 3 + a. 

In the last case, examining the broad peak more closely shows that, for ,F5 < a < 
1 ,  B M i(1 -(a/k+k4/720)).  This broad maximum peaks at Em,, M (180a)i = 2 .8d  
aFd BmaZ z i (1 -0.44~:). As an indication of the flatness of this peak, for the range 
a5 < k < 5.2&, B 2 i (1 -a;). When a 4 p5, the finite depth modifies the maximum 
growth rate, giving B M a ( l6 (3a/,8k2 + k4/720)) with a broad peak at Emax x 3.2(c(//?)Q 
and Bmax M $( 1 - 0.44(a/,8)3). 

The present work is only concerned with the case of a thin, viscous layer over a less 
viscous, deep layer, so a -g 1 and ,8 8 1. We further restrict our consideration to the 
mechanism giving the fastest growth, i.e. the last regime considered above, where 6 x 
i. The lowest-order finite-amplitude analysis (9 3) therefore predicts that the growth is 
independent of wavelength. 

Appendix B. Power-law fluid 
The long-wave analysis of 93 is not limited to Newtonian fluids. The important point 

is that both surfaces of the layer are shear-free, so throughout the layer shear stresses 
are O(E) smaller than normal stresses, and the latter are independent of z to O(2) .  (This 
assumes that the lower fluid is passive and effectively hydrostatic; the restriction this 
applies to wavelength will depend on the rheology and depth of fluid 2.) Hence the 
horizontal force balance ( 3 . 9 ,  (3.6) applies for any rheology. 

Here we consider a layer of fluid with a power-law rheology, subject to a disturbance 
independent of y.  Then the constitutive relation can be written in the form 

7 X Z  = - 3-22 = 2P, sgn (u,) luZll'm, (B 1) 

where ,ur has appropriate units and m > 1 for a fluid that weakens with increasing 
strain rate. Eliminating 7,. and u as before yields a single Lagrangian equation 
describing the evolution of the thickness of the layer as we follow a material cross- 
section, in dimensionless form : 

using the same scales as before, except for the new timescale (8pT/Apgd,)". For the 
special case of a Newtonian fluid (m = 1) this reduces to (3.13). To simplify the 
notation, we will assume that m is an odd integer. 

For an infinitely long layer with a localized disturbance (i.e. constant end forces: 
d, = 1) 

DS - ( S 2 - l ) m  -- 
Dt Sm-l ' 
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t = 6  

FIGURE 9. Interface profiles S(x) for a power-law fluid, for an initial sinusoidal perturbation of 
amplitude 0.1, for the constant-wavelength conditions (L = 1): (a) power-law exponent m = 3, at 
times t = 0,4, 5, and 6 (t* x 6.08); (b) m = 7 and t = 0, 1200.0, and 1296.4 (t* x 1296.5). For higher 
m the deforming region is more compact, and the profile tends toward straight lines between the 
deforming regions. 

This can be integrated by parts. For example, if rn = 3 

1 6-1 +-ln - 6 6 
r(6) = 4(6z-1)2+8(62-1) 16 IS+II '  

where r(6) = t ,  - t is the time remaining before the thickness of the fluid cross-section 
goes to co or 0. 

While the amplitude a = 6- 1 remains small, the approximate solution is 

where a, is the initial amplitude. (This algebraic growth is quite different from the 
small-amplitude exponential growth for Newtonian rheology.) This slow growth lasts 
for a period of roughly At - l/[(rn - 1 )  2" a:-']. For large amplitudes, the growth 
again becomes algebraic in the time remaining before the singularity is reached at 
t = t*: 

6 x l /[rn(t* - t)]"", 6, > 1 (B 6 4  
6 = [rn(t* - t)]l'", 6, < 1. (B 6 b )  

This catastrophic growth occurs over a timescale At N l/rn (or in dimensional terms 
(8Pr lAPgh)" l~) .  
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FIGURE 10. Growth of the disturbance amplitude over time for a power-law fluid given an initial 
perturbation amplitude of 0.1 : constant-wavelength L = 1 (solid), constant end-force F = 1 (dashed), 
and small-amplitude approximation (B 5 )  (dotted). (a) m = 3; (b) m = 7. For constant force, the 
trough (amtn) would pinch off long before the peak (amaz) became infinite, but the constant-wavelength 
condition makes the peaks less stable and troughs more stable. For higher rn, the growth abruptly 
becomes rapid. 

As in the Newtonian case, a disturbed region under constant end forces will tend to 
stretch out in the x-direction. To keep the wavelength constant, the end forces must 
vary in time to give 

Layer profiles calculated using this condition are shown in figure 9 for m = 3 and 
m = 7, from an initial sinusoidal disturbance. Profiles for the constant-end-force 
condition (not shown) are qualitatively similar. The effect of increasing m is seen to be 
concentration of the deformation into narrow regions at the centres of peaks and 
troughs, while elsewhere the profile becomes linear in x. 

Figure 10 shows how the initial slow growth suddenly becomes catastrophic after a 
certain threshold has been reached (more so for higher m). For the constant-force 
condition, a trough reaches this threshold and necks off much sooner than a peak of 
equal initial amplitude blows up. The constant-wavelength condition, however, causes 
peaks to grow sooner than troughs. 

Regardless of the end conditions, when peaks get large (compared to the current 
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equilibrium thickness), the large-amplitude effects still produce catastrophic growth 
algebraic in the time remaining (6 cc I/(& - t)l’”), giving infinite thickness in finite 
time, as for a Newtonian fluid. 

Appendix C .  Large-amplitude similarity solution 
The equations appropriate to large-amplitude disturbances (for the two-dimensional 

case) admit a rich family of similarity solutions, which illustrate a variety of behaviour. 
While such solutions demand particular initial conditions, nonetheless they can be 
interpreted as good local approximations for situations arising from arbitrary initial 
conditions. Two cases are of particular relevance to sheet formation: one describes how 
a smooth finite peak evolves to an infinite singularity, the other describes how that first 
singularity changes shape as the sheet evolves. 

For large amplitudes d, is negligible, and the Eulerian equations are 

S,+(u6), = 0, S+u, = 0. (C 1 4  b) 

x = 4 7 )  5, 8 = 4MQ, u = 4 7 )  A(7) g(Q, (C 2) 

We assume a similarity solution of the following form: 

where 7 = t - t ,  is the time relative to the singular time t,. Substitution shows that 
similarity requires both A’/A2 and a’/(aA) to be constants. 

Choosing the scale of A (provided A’ =k 0) gives 

47) = 1/7. (C 3 4  
Of course, 6 must be non-negative, so solutions with f> 0 will apply only for T 2 0, 
when A is decreasing, and those withf< 0 will apply for 7 d 0, when - A  is increasing 
catastrophically to 7 = 0. The second constant, say A, implies 

a(7) = I+. (C 3b)  
For 7 > 0, positive A gives a profile that spreads out in the x-direction, while for 
negative h the profile contracts; the converse is true for 7 < 0. 

The system (C 1) becomes 

-f-hLy+(fg)’ = 0, f+g’  = 0. (C 4 4  b) 
The solution involves two arbitrary constants C and D and a change of variables (as 
long as h + 0, l), corresponding to a different inertial reference frame: 

5 = 5 - C/(h2 - A), q ( 0  = g(5) - C/(h  - 1). (C 5)  

(C 6 4  b) 

The solution is given implicitly by 

c = 4 + sgn (C- 4) D141k, f = - 1/[1+ sgn (4K-  4)) kDIql”-ll, 
where k = h/(h- 1) and D > 0. This is the general solution; a phase-plane analysis 
verifies that this gives all solutions (for A(t)  not constant, h + 0,l)  except the trivial 
solutionsf= 0 andf= - 1. This solution describes a variety of behaviour, depending 
primarily on h and on which branch of the solution is chosen. The constants C and D 
affect the x origin and scale, respectively. 

For example, consider A > 1 (so k > l), C = 0, D = 1, and the branch where 
sgn (t-g) = sgn (5) = sgn (g) : 

5=g+sgn(g)lglk, f=-1/[1+klglk-l1. (C 7a ,  b) 
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SincefG 0, this solution only applies for 7 < 0;  it describes the growth of a finite peak 
up to the singular time when 6 becomes infinite. The asymptotics in 5 reveal the 
behaviour 

8+[1 -k1~1-~Ixl”-’]/[~1, u+-x /~T(  as I f l + O ;  (C 7 d  
8-2 I x ~ - ~ I ~ / ~ ,  u + - sgn (x) (x(l/” as 151 + co. (C 7 4  

The first (C 7 c )  applies for x near the origin (1x1 + I#). The peak is of fairly general 
shape, but to be analytic in x, k must be an odd integer. The second (C 7 d )  applies far 
from the origin early on (7 + 0), but applies ever nearer until at the singular time, it 
applies for all x. The asymptotic shape (C 7 d )  is independent of time; as the peak 
grows it fills in the profile of the integrable negative power of x. For a smooth peak, 
k = 3, h = and at the singular time S cc 1xl-i (for any D). 

As a second example, h > 1, C = sgn(Q, D = (A- l)’/h, and the branch where 
sgn (0 = - sgn (g) : 

5 = g- sgn (s> h-“((h - 1) lgl + (C 8 4  
f= l/[((h-l)lgl+l)k-l-ll, (C 8b) 

6-t 1 /[71-A/2(2 ~xl):], u + - sgn (XI (2 ~ X I ) ; / ~ ~ - A / Z  as IEl+O; (C 8 4  
6+ ( A  Ixl)-’/’, u --f - sgn (x) (h Ixl>”’/(h - I) as 161 + co. (C 8 4  

- 11, 

which describes a sheet, symmetric in x, for 7 2 0. Asymptotically 

At the singular time (7 = 0), the time-independent profile (C 8d) applies everywhere; 
this example shows what happens to an initial profile proportional to an integrable 
negative power of x. (By a different choice of C and D, the profile (C 8 4  could be 
made to match (C 7d) exactly.) For 7 > 0, (C 8c) applies near the origin; regardless of 
the starting x-dependence, the shape around the singularity (sheet) becomes 
proportional to l/lxlk. If h < 2 then the square-root singularity and the corresponding 
strength of the sink at the origin decay with time, as the layer drains away. (This would 
be true for an initially smooth profile like (C 7 c) with h = i.) Conversely, for h > 2, the 
singularity grows, as fluid comes in from the sides faster than it can be disposed of. The 
special case h = 2 gives a steady sheet. There are also related solutions for h = 0, 0 < 
h < 1, and h = 1, which have the same asymptotic shapes (C 8 c, d), except that, for 

l < l +  00, the forms for u are different, and for h = 0, S+e-lzl/t as IEl-+ co. 
Briefly, the other types of behaviour governed by the similarity solution are as 

follows. For 7 d 0, i.e. profiles growing to the singular time, there are four: (i) a zero 
minimum of shape Ixlk, k > 0, locally time-independent, that far away levels off to 
approach 1 /I71 ; (ii) a profile that approaches zero as x -t - co and 1/(71 as x -+ + co ; (iii) 
a symmetric finite minimum flanked by sheets (which could be extended periodically) ; 
and (iv) a sheet whose sides levels off to approach l/ lTl ,  rather than zero. For 7 3 0, 
where the profile starts at the singular time and diminishes thereafter, there is only one 
other case: a zero minimum flanked by sheets (which could extend periodically). The 
steady-shape case of A(7) = 1, so a(7) = eh7, gives either an isolated sheet, or a zero 
minimum where IS,l i- co surrounded by sheets (possibly periodic). Note that solutions 
with the same A(7) and h but different C and D can be ‘cut and pasted’ together to give 
other similarity profiles; if g and g’ are continuous this will produce reasonable results. 
All cases with sheets show the same l/lxli shape. 



3 72 D.  Canright and S.  Morris 

REFERENCES 
AMARANATH, T. & RAJAPPA, N. R. 1976 A study of Taylor instability of superposed fluids. Acta 

AREF, H. & TRYGGVASON, G. 1989 Model of Rayleigh-Taylor instability. Phys. Rev. Lett. 62, 

BAKER, G. R. & MEIRON, D. I.  1984 Boundary integral methods for axisymmetric and three- 

BAKER, L. & FREEMAN, J. R. 1981 Heuristic model of the nonlinear Rayleigh-Taylor instability. J.  

BELLMAN, R. & PENNINGTON, R. H. 1954 Effects of surface tension and viscosity on Taylor 
instability. Q. Appl. Maths 12, 151-162. 

CANRIGHT, D. R. 1987 A finite-amplitude analysis of the buoyant instability of a highly viscous film 
over a less viscous half-space. PhD thesis, University of California, Berkeley. 

CANRIGHT, D. R. & MORRIS, S. 1993 Long-wave buoyant instability of a thermo-viscous layer 
beneath a suddenly cooled plane. (In preparation.) 

CHANDRASEKHAR, S. 1961 Hydrodynamic and Hydromagnetic Instability. Oxford University Press. 
DAVIES, G.  F. 1990 Heat and mass transport in the early earth. In Origin of the Earth (ed. H. E. 

Newsom & J. H. Jones), pp. 175-194. Oxford University Press. 
DIENES, J. K. 1978 Method of generalized coordinates and an application to Rayleigh-Taylor 

instability. Phys. Fluids 21, 736744. 
DRAZIN, P. G. 1969 Non-linear internal gravity waves in a slightly stratified atmosphere. J.  Fluid 

Mech. 36, 433-446. 
DUSSAN V., E. B. 1975 Hydrodynamic stability and instability of fluid systems with interfaces. Arch. 

Rat. Mech. Anal. 57, 363-379. 
EMMONS, H. W., CHANG, C. T. & WATSON, B. C .  1960 Taylor instability of finite surface waves. J.  

Fluid Mech. 7, 177-193. 
HARLOW, F. H. & WELCH, J. E. 1966 Numerical study of large-amplitude free-surface motions. 

Phys. Fluids 9, 842-851. 
KULL, H. J .  1986 Nonlinear free-surface Rayleigh-Taylor instability. Phys. Rev. A 33,  1957-1967. 
KULL, H. J. 1991 Theory of the Rayleigh-Taylor instability. Phys. Rep. 206, 197-325. 
LEWIS, D. J. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular to 

MENIKOFF, R., MJOLSNESS, R. C., SHARP, D. H. & ZEMACH, C. 1978 Initial value problem for 

NAYFEH, A. H. 1969 On the non-linear LambTaylor instability. J .  Fluid Mech. 38, 619-631. 
NEWHOUSE, L. A. & POZRIKIDIS, C. 1990 The Rayleigh-Taylor instability of a viscous liquid layer 

OTT, E. 1972 Nonlinear evolution of the Rayleigh-Taylor instability of a thin layer. Phys. Rev. Lett. 

RAYLEIGH, LORD 1883 Investigation of the character of an incompressible heavy fluid of variable 

SHARP, D. H. 1984 An overview of Rayleigh-Taylor instability. Physica 12 D, 3-18. 
TAYLOR, G. I. 1950 The instability of liquid surfaces when accelerated in a direction perpendicular 

TRYGGVASON, G. 1988 Numerical simulations of the Rayleigh-Taylor instability. J.  Comput. Phys. 

WALCOTT, R. I. 1973 Structure of the earth from glacio-isostatic rebound. Ann. Rev. Earth Planet. 
Sci. 1, 15-37. 

WHITEHEAD, J. A. & LUTHER, D. S. 1975 Dynamics of laboratory diapir and plume models. J. 
Geophys. Res. 80, 705-717. 

WILSON, S. D. R. 1988 The slow dripping of a viscous fluid. J.  Fluid Mech. 190, 561-570. 

Mech. 24, 87-97. 

749-752. 

dimensional Rayleigh-Taylor instability problems. Physica 12D, 19-3 1. 

Appl. Phys. 52, 655-663. 

their planes, 11. Proc. R. SOC. Lond. A 202, 81-96. 

Rayleigh-Taylor instability of viscous fluids. Phys. Fluids 21, 16741687. 

resting on a plane wall. J.  Fluid Mech. 217, 615-638. 

29, 1429-1432. 

density. Proc. Lond. Math. SOC. 14, 170-197. 

to their planes. I. Proc. R.  SOC. Lond. A 201, 192-196. 

75, 253-282. 




